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ABSTRACT

The viability of a parameterless hybrid data assimilation algorithm is investigated. As an alternative to the

traditional hybrid covariance scheme, hybrid gain data assimilation (HGDA) was proposed to blend the gain

matrix derived from the variational method and the ensemble-based Kalman filter (EnKF). A previously

proposed HGDA algorithm uses a two-step process applying the EnKF with a variational update. The al-

gorithm is modified here to limit the variational correction to the subspace orthogonal to the ensemble

perturbation subspace without the use of a hybrid weighting parameter, as the optimization of such a pa-

rameter is nontrivial. The modified HGDA algorithm is investigated with a quasigeostrophic (QG) model.

Results indicate that when the climatological background error covariancematrixB and the observation error

covariance R are well estimated, state estimates from the parameterless HGDA are more accurate than the

parameter-dependent HGDA. The parameterless HGDA not only has potential advantages over the stan-

dardHGDAas an online data assimilation algorithmbut can also serve as a valuable diagnostic tool for tuning

the B andRmatrices. It is also found that in this QGmodel, the empirically best static Bmatrix for the stand-

alone 3DVAR has high variance at larger spatial scales, which degrades the accuracy of the HGDA systems

and may not be the best choice for hybrid methods in general. A comparison of defining the orthogonal

subspace globally or locally demonstrates that global orthogonality is more advantageous for stabilizing the

hybrid system and maintains large-scale balances.

1. Introduction

The most effective data assimilation (DA) algorithms

used today in operational numerical weather prediction

(NWP) form a hybrid combination of Variational

(VAR) and ensemble-based methods. Following the

pioneering work of Barker (1998), different algorithms

have been proposed (Hamill and Snyder 2000; Lorenc

2003; Buehner 2005; Buehner et al. 2010) to realize the

concept of hybrids via blending the climatological

background error covariance used for the VAR with a

dynamic background error covariance derived from

flow-dependent information provided by an ensemble

forecast or ensemble Kalman filter (EnKF; Evensen

1994). Hybrid DA has been implemented at operational

centers such as the EuropeanCentre forMedium-Range

Weather Forecasts (ECMWF) (Isaksen et al. 2010) and

theNationalCenters forEnvironmental Prediction (NCEP)

(Kleist and Ide 2015).

Hybrid covariance data assimilation (HCDA) com-

bines the climatological and ensemble-based back-

ground error covariance matrices. The climatological

background error covariance is typically static and full
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rank, while the rank of the ensemble-estimated back-

ground error covariance cannot exceed k2 1, where k is

the ensemble size. From a variational perspective, the

flow-dependent information from the ensemble can be

introduced to the variational system to improve upon

the static background error covariance matrix. The hy-

brid covariance matrix is typically determined as a

weighted sum of the two covariance terms (Hamill and

Snyder 2000; Houtekamer and Zhang 2016), and has

been extended using alternative algorithms such as the

control variable approach (Lorenc 2003).

Forming a hybrid of two error covariancematrices can

also be carried out under the EnKF framework. For

example, perturbations randomly drawn from the cli-

matological background error covariance can be added

to the ensemble perturbations in order to augment the

flow-dependent background error covariance with cli-

matological error information. This approach is com-

monly referred to as additive inflation (Mitchell and

Houtekamer 2000) because the sampled information is

directly added to the flow-dependent error covariance

matrix, though the term ‘‘additive inflation’’ does not

necessarily imply a hybrid.

Penny (2014) introduced a hybrid gain data assimila-

tion (HGDA) approach that forms a hybrid combina-

tion of the gain matrices that are determined by the

EnKF and variational algorithms. Further, Penny (2014)

showed that an efficient variant of the HGDA can be

implemented without explicitly forming the hybrid gain

matrix. This algorithm recenters the ensemble pertur-

bations at a new hybrid mean state and relies on the

model dynamics to update the ensemble perturbations

during the forecast. Bishop et al. (2017) also proposed a

gain form of the ensemble transform Kalman filter

(GETKF) using a hybrid gain matrix, which updates

both the ensemble mean and the ensemble perturba-

tions during the hybridization analysis step.

TheHGDA algorithm has been tested with numerical

models with different complexity, including a simple

40-variable Lorenz model (Penny 2014), the NCEP

global ocean data assimilation system (GODAS) (Penny

et al. 2015), the ECMWF semioperational configuration

(Bonavita et al. 2015), and more recently the Canadian

Meteorological Centre (CMC) (Houtekamer et al. 2018).

In all cases, it was shown that the HGDA improves ac-

curacy compared to the individual EnKF and variational

(e.g., 4DVARor 4DEnVAR) components. These studies

have shown that HGDA can 1) stabilize the EnKF sys-

tem, 2) reduce model bias occurring in the EnKF system,

3) mitigate the misrepresentation of long-range correla-

tion in the covariance matrix caused by localization, and

4) reduce the sensitivity to tuning parameters such as

localization and inflation.

Investigations with the Lorenz model focused on the

stability of the cycled DA process. The stability of the

EnKF relies on the subspace spanned by ensemble

members being representative of the unstable-neutral

subspace (Bocquet and Carrassi 2017). Results with the

Lorenz model show that when the ensemble size is in-

sufficient, using climatological information from the

VAR can stabilize the EnKF component in both the

HGDA and HCDA approaches by increasing the di-

mensionality of the solution space beyond that spanned

by the ensemble members.

In real-world applications, all DA systems are af-

fected by systematic model errors that lead to model

biases (Dee 2005). The presence of such systematic er-

rors can alter the optimal combination weight in a hy-

brid system (Etherton and Bishop 2004). The EnKF

alone is particularly susceptible to systematic model

errors because the background error covariance is esti-

mated solely by using an evolved ensemble of biased

forecast models (Penny 2017). Because the climatolog-

ical background error covariance matrix is often con-

structed using information about forecast errors using

many cases spread out over time (Derber and Bouttier

1999; Bannister 2008), it partially considers systematic

model errors. The forecast errors are represented by

differences between forecasts of different lengths and

valid at the same time and this allows the climatological

background error partially considering systematic

model errors. As demonstrated in the Hybrid-GODAS

system (Penny et al. 2015; Penny 2017), the climato-

logical information provided in the global variational

correction can remove large-scale temperature and sa-

linity biases arising from the use of localization and an

undersampled ensemble.

Although hybrid methods have proven to be effec-

tive, the need to optimize the hybrid coefficient re-

mains an unresolved issue (Wang et al. 2013). Both

the HCDA and HGDA methods employ a tunable

parameter that weights the dynamic and static infor-

mation supplied by the EnKF and VAR. An empiri-

cally best weight can be found based on sensitivity

tests for particular cases or long-term investigation of

the hybrid system (Storto et al. 2018). For instance,

the NCEP Global Data Assimilation System (GDAS)

uses 12.5% and 87.5% static and ensemble background

error covariance, respectively (Huang andWang 2018).

Under the HCDA framework, Ménétrier and Auligné
(2015) demonstrate a variational method to optimize the

hybrid covariance weight and the localization parameter

simultaneously. In practice, the weight can be a single

value or dependent on the wavenumber of the model

state (Kleist 2012) or vary vertically (D. Kleist 2015,

personal communication). The optimal weight can also
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be affected by the observation density (Satterfield et al.

2018). However, tuning an empirical best weight spa-

tially introduces additional degrees of freedom into the

hybrid system. Given the difficulties of estimating a

proper weight in the hybrids, we were motivated to

develop a parameterless hybrid algorithm.

The present study proposes a new algorithm to avoid

the use of a combination weight by leveraging the vari-

ational correction used in the HGDA algorithm. The

HGDA uses the EnKF to reduce the dynamical error

structure via a contraction within the ensemble pertur-

bation subspace, while the unrepresented unstable and

neutral modes are further constrained using a full-rank

static background error covariance matrix using a vari-

ational minimization. Focusing on refining the confin-

ing the space for correction, Carrassi et al. (2008) used

a similar approach with a 3D variational assimilation

in the unstable subspace (3DVAR-AUS) to assimilate

each observation based on the spatially unstable struc-

ture defined by bred vectors (Toth and Kalnay 1993).

BothHGDAand 3DVAR-AUS suggest the importance

of obtaining the corrections associated with the growing

dynamical error modes. During the efficient two-step

HGDA algorithm, the solution from the EnKF is de-

termined by the linear basis formed by the analysis

ensemble perturbations, while the variational optimi-

zation applies an additional correction within the lin-

ear space representative of the full system dimension.

Assuming the EnKF solution is accurate within the

subspace defined by the analysis ensemble perturba-

tions, it is preferred that any additional correction from

the VAR should be restricted to the subspace orthogo-

nal to the linear basis defined by the analysis ensemble

perturbations.

The concept of applying the orthogonality to form

a hybrid DA system has been applied in the reduced

rank Kalman filter (Heemink et al. 2001; Petrie and

Bannister 2011). The algorithm proposed by Heemink

et al. (2001), named as Partially orthogonal ensemble

Kalman filter (POEnKF), applies the orthogonality to

account for the information lost by the ensemble. The

POEnKF algorithm aims to blend the reduced-rank

square root filter (RRSQRT; Verlaan and Heemink

1997), which uses the p leading eigenvectors to form a

covariance matrix, and an independent EnKF system

with k randomly generated ensemble members. These

two DA systems interact with each other only at the

analysis step to form a hybrid covariance. In the

POEnKF, the RRSQRT system provides the direction

of the leading p eigenvectors and only the information of

the EnKF orthogonal to the subspace spanned by the p

eigenvectors is used as a supplement. In our proposed

algorithm, the EnKF first corrects errors in the subspace

spanned by the ensemble members and only the part of

the variational update orthogonal to the EnKF analysis

perturbations is used as a correction to the EnKF

analysis mean.

The variational information can be updated locally

or globally to correct the EnKF analysis mean state. It

is expected that applying the variational correction

globally can constrain the large-scale bias and errors

and preserve the dynamical balance of the variational

correction. However, updating the variational infor-

mation at each local region is attractive for computa-

tional efficiency. Penny (2014) found that applying the

variational information globally leads to better accu-

racy in the HGDA. In our proposed algorithm, the

orthogonal correction from the variational correction

can be defined globally and locally. The impact of

adopting global orthogonality and local orthogonality

is investigated.

In what follows, section 2 provides a detailed meth-

odology about the standard HGDA algorithm and the

newly proposed version that limits the VAR correction

to subspace orthogonal to the analysis ensemble per-

turbations. Section 3 introduces the model and the

setup of the numerical experiments. Data assimilation

results and sensitivity experiments are presented in

sections 4 and 5, respectively. Section 6 provides a

comparison between global orthogonality and local

orthogonality.

2. Methodology

a. Hybrid gain algorithm

The HGDA can be generalized as a hybrid combi-

nation of gain matrices derived from arbitrary sources.

Penny (2014) proposed a hybrid combination of gain

matrices determined via the EnKF and a variational

method. The resulting hybrid gain matrix (K̂) can be

expressed as

K̂5 c
1
K1 c

2
K

B
1 c

3
(K

B
HK) , (1)

where K and KB denote the gain matrices from the

EnKF and the VAR, respectively; KBHK represents

potential interactions between two DA systems, where

H is the linearized observation operator. With an ap-

propriate choice of the constants c1, c2 and c3, we can

construct an efficient algorithm for determining K̂d,

where d is the observation innovation. Penny (2014)

proposed two different strategies to conduct the hybrid

gain algorithm. Figure 1 shows the flowchart of these

two HGDA scenarios: ‘‘a’’ and ‘‘b.’’ Scenario a uses

hybrid coefficients c1 5 1, c2 5 a, and c3 5 2a, while

scenario b uses c1 5 (1 2 a), c2 5 a, and c3 5 0.
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Scenario a requires a two-step sequential update. In

the first step, a standard EnKF with k ensemble mem-

bers is used to determine the analysis mean state and

the analysis ensemble perturbations. The mean vector

(xEnKF
a ) with a model dimension of m is given by

xEnKF
a 5 x

b
1K(yo 2Hx

b
) . (2)

The perturbation matrix (X0EnKF
a ) has a dimension of

m 3 k. The background ensemble mean state (xb) has a

dimension of m, and the operator H, transforming the

model state variables from the model space to the ob-

servational space, has a dimension of l3m. The second

step corrects the analysis mean state of the EnKF by

supplying it as the background field of the VAR. The

resulting cost functional for the variational minimiza-

tion is

J(x)5 (xVAR
a 2 xEnKF

a )B21(xVAR
a 2 xEnKF

a )

1(yo 2HxVAR
a )R21(yo 2HxVAR

a ) . (3)

To minimize this functional, the gradient of J [Eq. (3)] is

set to zero so that the VAR analysis can be derived as

xVAR
a 5 xEnKF

a 1K
B
(yo 2HxEnKF

a ) . (4)

The solutions of the VAR analysis and the EnKF anal-

ysis mean state are then blended to form the hybrid

analysis mean state:

xHGDA
a 5 (12a)xEnKF

a 1axVAR
a . (5)

The tunable parameter a reflects the expected accuracy

of component systems. The ensemble analysis pertur-

bations of the EnKF are then recentered at the hybrid

analysis mean state:

XHGDA 5 xHGDA
a vT 1X0EnKF

a , (6)

where v is a vector of ones.

The flowchart of scenario b shown in Fig. 1 is similar to

scenario a but with the difference that the same back-

ground mean state (xb) is used in both the EnKF and the

VAR systems. The tunable parameter a is needed as

well to hybridize the analysis mean state of the EnKF

and the VAR analysis. Scenario b allows computing the

EnKF and the VAR solutions concurrently and also

interpreted as a means of sampling data assimilation

uncertainty (Houtekamer et al. 2018).

Scenario a conceptually uses the VAR to correct

the analysis mean state of the EnKF, while scenario b

mirrors traditional HCDA approaches and is more

computationally economical. Both scenarios have been

applied to numerical models with different complexities.

In particular, scenario a has been applied to the NCEP

operational ocean model (Penny et al. 2015; Penny

2017) while scenario b was applied to the ECMWF op-

erational atmospheric model (Bonavita et al. 2015),

and the Canadian Meteorological Centre atmospheric

model (Houtekamer et al. 2018). In this study, we adopt

scenario a and focus on examining how the variational

optimization can improve an analysis that has already

been computed by the EnKF.

FIG. 1. Flowchart of different versions of HGDA. In theHGDA scenario a, a standard EnKF

is executed first and the analysis mean state is then used as the background field of the VAR in

the second step update. In the HGDA scenario b, both the EnKF and the VAR use the same

background field. After the update process, an empirical optimal combination weight, a, is

given in both scenario a and scenario b to form a hybrid analysismean state. In theQR-HGDA,

the component that is orthogonal to the ensemble subspace is extracted from the VAR’s

analysis and used as the second step correction directly. Thus, theQR-HGDA avoids the use of

an empirical parameter.
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In addition, it is expected that the ensemble pertur-

bations will grow upon the unstable-neutral subspace

associated with the hybrid ensemble mean state during

the subsequent forecast and cycling of the DA system.

Yang et al. (2012a) and Chang et al. (2014) indicated

that recentering an EnKF toward a more accurate mean

state improves representation of the dynamical uncer-

tainties that are used to form the background error co-

variancematrix, thus better maintaining theGaussianity

of the ensemble distribution. We should emphasize that

the HGDA algorithm does not ‘‘reuse’’ observations

and thus does not violate the basic assumption that

background and observation errors are uncorrelated.

Since the gain covariance matrices are hybridized, the

HGDA algorithm should be regarded as applying a

single modified Kalman gain matrix to the innovation

vector (Penny 2014). The observation information is

partially used in each component DA system.

b. HGDA with VAR update limited to the
orthogonal subspace

It is no doubt that the determination of hybrid coef-

ficients is crucial for the performance of hybrid schemes.

However, it is difficult to optimize the hybrid weighting

parameter, particularly for complex systems modeling

large-scale geophysical flow. This study seeks a modified

HGDA algorithm to maintain the advantage of the hy-

brid without using a weighting parameter. With con-

sideration for developing a maintainable DA system, we

project the VAR correction to the subspace that is or-

thogonal to the linear subspace defined by the analysis

ensemble perturbations. Thus, the variational correc-

tion to the EnKF analysis mean is only applied in di-

rections that cannot be represented by the analysis

ensemble perturbations as a basis.

To achieve this, we introduce an algorithm that we

denote as the QR-HGDA. The analysis field of the

VAR is appended as an additional ensemble member

to the EnKF analysis ensemble (i.e., the last col-

umn vector) to form an augmented matrix A5
[x1a , x

2
a , . . . , xk21

a , xka , x
VAR
a ]. All the vectors (x) are

full states and the dimension of this augmented matrix is

m 3 (k 1 1). The QR factorization (Golub and Van

Loan 2013) decomposes a matrix A into a product of an

orthogonal matrix ~Q and an upper triangular matrix ~R

(A5 ~Q ~R). By applying the QR factorization to the

augmented matrix formed from the ensemble members

and VAR analysis, we obtain the matrix ~Q of dimension

m 3 (k 1 1) and the matrix ~R of dimension (k 1 1) 3
(k 1 1). All the column vectors of the ~Q matrix are or-

thogonal to each of the column vectors. Each column

vector of A, xia can be represented by a linear combi-

nation of the first i columns of ~Q matrix. Therefore, the

last column vector in the matrix ~Q is associated with the

variational increment. We denote this orthogonal com-

ponent as x0q and can be viewed as

x0q 5K
q
(yo 2HxEnKF

a ) , (7)

where the matrix Kq is the gain matrix restricted to the

subspace that is orthogonal to the analysis ensemble

subspace. We note that Kq can be regarded as aKB and

that goes back to the scenario a in Eq. (1). This study

adopts the modified Gram–Schmidt algorithm (MGS,

Leon et al. 2013) to extract the orthogonal component.

MGS produced vectors whose inner products are closer

to zero numerically than those generated by using the

classical Gram–Schmidt (Leon et al. 2013).

The orthogonal component contains the variational

information and is added to the EnKF analysis mean

state directly to form the hybrid analysis mean in the

QR-HGDA,

xHGDA
a 5 xEnKF

a 1 x0q . (8)

Substituting Eqs. (2) and (7) into Eq. (8):

xHGDA
a 5 x

b
1K(yo 2Hx

b
)

1K
q
fyo 2H[x

b
1K(yo 2Hx

b
)]g , (9)

and reformulating Eq. (9):

xHGDA
a 5 x

b
1 (K1K

q
2K

q
HK)(yo 2Hx

b
) , (10)

the hybrid gain matrix can be reformulated as

K̂5K1K
q
2K

q
HK: (11)

Similar to theHGDA, the hybrid gain matrix of theQR-

HGDA contains a contribution of K and Kq with an

additional term relating to any interaction between the

two gain matrices. But for this formulation, all coef-

ficients are equal to 1, with no explicit weighting

parameter.

The processes of the QR-HGDA are listed as follows:

Step1: Execute a standard EnKF for dynamical cor-

rection (the green part in Fig. 1).

Step 2: Perform a variational analysis using the EnKF

analysis mean state as the background field for

climatological correction via the variational method

(the red part in Fig. 1).

Step 3: Concatenate the analysis ensemble members

(m3 k) from the EnKF and the VAR analysis field

(m3 1) into the largermatrixA [m3 (k1 1)]. Then

apply the QR factorization to this augmented ma-

trix to obtain the orthogonal component (x0q).
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Step 4: Add the orthogonal component to the EnKF

analysis mean state to form a hybrid analysis mean

state (the purple part in Fig. 1).

Step 5: Recenter the EnKF perturbation into the

hybrid analysis mean state.

3. Model and experiment design

a. General setup

All data assimilation experiments are based on the

quasigeostrophic (QG) model (Rotunno and Bao 1996).

Variations of the QG model have been widely used for

testing new DA methods (Hamill and Snyder 2000;

Snyder et al. 2003; Corazza et al. 2003, 2007; Carrassi

et al. 2008; Yang et al. 2009a,b, 2015). Our QG model

configuration has a periodic channel in the zonal direc-

tion, an impermeable boundary in the meridional di-

rection, and a rigid surface at the top and bottom. There

is no terrain represented in this model. Dynamical

processes include advection, diffusion, relaxation, and

Ekman pumping at the bottom level. The model fields

are discretized into 64 and 33 grid points in the zonal and

meridional directions, respectively, with seven vertical

levels. Model variables are nondimensionalized, in-

cluding the potential temperature at the top and bottom

levels and pseudo–potential vorticity at the five interior

levels.

We use the local ensemble transform Kalman filter

(LETKF; Hunt et al. 2007) as our EnKF variant. The

LETKF and 3DVAR have been implemented with the

QG model by Yang et al. (2009a) and Morss (1999),

respectively. Observations emulate rawinsondes, con-

taining the horizontal component of wind velocity and

temperature at all levels. There are 64 observations

(about 3% coverage) located at model grid points that

are selected randomly at the beginning and fixed after-

ward. The observation locations are the same in all ex-

periments. Rawinsonde-like observations are simulated

every 12 h by adding a Gaussian distributed observa-

tion error to the true wind velocity and temperature,

derived by applying a linear observation operator to the

nature run.

We follow Yang et al. (2009a) to configure these DA

systems with the QGmodel. The LETKF assimilates all

observations in a local volume simultaneously to form

an analysis at each grid point. The optimal dimension of

the local volume depends on the ensemble size and

observation density. For this QG model configuration,

Yang et al. (2009a) used a horizontal localization of 193
19 grid points with an ensemble size of 40 members.

Because the ensemble size used in this study is smaller

than 40, we use a localization of 15 3 15 grid points for

all LETKF experiments. Although the localization is not

optimized for each of the ensemble sizes, the choice of

localization ensures stability with 20 members. A verti-

cal dependent multiplicative variance inflation is ap-

plied to consider the error characteristic at each vertical

level [listed in Table 2 in Yang et al. (2009a)].

To characterize the behavior of the QR-HGDA, we

conduct a series of observing system simulation experi-

ments (OSSEs). We commence experiments using the

DA configuration described above, varying ensemble

size (section 4). A series of sensitivity experiments are

then presented to evaluate the impact of parameter

changes (section 5).

b. Setup of the sensitivity experiments

In the first set of sensitivity experiments, we evaluate

how these DA systems perform when model bias is

imposed during the forecast. The model bias is gener-

ated by adjusting the vertical eddy diffusion, which im-

pacts the Ekman pumping effect in the QG model. The

QG model is forced by relaxation to a zonal mean state

at all levels and an Ekman pumping at the bottom level.

By decreasing the vertical eddy diffusion from 5 to

4.75m2 s21, the imperfect QG model has smaller cli-

matological variability (0.7% of the potential tempera-

ture at the bottom level) (Yang et al. 2009b). We note

that observations sampled from the nature run remain

unbiased.

The second set of sensitivity experiments are per-

formed to examine how the HGDAmethods respond to

errors in the variational correction. For this purpose, we

modify the noise applied to the synthetic observations

generated from the nature run while keeping the esti-

mated observational error covariance matrix R un-

changed. We evaluate the experiments where the true

observation error is zero, identical to the diagonal el-

ements in R, or double these values. The purpose of

these experiments is to mimic situations of overesti-

mation, accurate estimation, and underestimation of

the observation error. Inflating the observation error

variance is a strategy adopted in operations (Bormann

et al. 2016) to avoid overweighting correlated obser-

vations during the cost-function minimization in the

VAR component. For evaluation purposes, assimilat-

ing perfect observations allows the DA to constrain the

unstable dynamical error modes without introducing

additional uncertainty into the innovation due to noise

from random processes.

The third set of sensitivity experiments aims to un-

derstand how hybrid systems are affected by the struc-

ture of the climatological background error covariance

matrix B. In Morss (1999), the B matrix is generated by

the true 3DVAR background error with assumptions
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and we refer it to as the original B. We construct a new

background error covariance by using the true 12-h

forecast error from a long-term cycled LETKF with 40

ensemble members. Both the originalB and the LETKF-

derived B matrices are constructed in spectral coordi-

nates, represented as

B5C1/2VC1/2 . (12)

The matrix C is the horizontal background error co-

variance at each level and the 7 3 7 matrix V is the

background error correlations between the vertical

levels. The amplitude of B can be further adjusted by

multiplying an amplitude factor (b) to optimize the

performance of 3DVAR:

~B5bB: (13)

Following Parrish and Derber (1992), the original B

matrix is generated with several assumptions, including

the B matrix is diagonal in horizontal spectral coordi-

nates and the B matrix has separable vertical and hori-

zontal structures and simple vertical correlations (Morss

1999), and Yang et al. (2015) suggests that a 40% re-

duction of the amplitude of background error covari-

ance can optimize the performance of 3DVAR. In the

sensitivity experiments, different amplitude factors and

different B matrices are tested to examine how the

HGDA/QR-HGDA is sensitive to the choice of the B

matrix. Through a spectral analysis, we expect to de-

termine the proper characterization of the static back-

ground error covariance used in HGDA.

4. Results with default DA setup

We first examine the performance of the standard

LETKF, while varying the ensemble size, by evaluating

the root-mean-square error (RMSE) of potential tem-

perature at the bottom level. As shown in Fig. 2, when

the ensemble size (k) is equal to 5, the standard LETKF

immediately experiences filter divergence and fails to

track the trajectory of nature run. Increasing the en-

semble size to 6, the RMSE is smaller at first but even-

tually diverges as well. Generally, it is expected that a

larger ensemble size will better represent the growing

modes of errors. However, Fig. 2 shows that the LETKF

is stable with k5 7 but the RMSE jumps abruptly when

increasing to an ensemble size k 5 8. Nevertheless, the

LETKF with k 5 8 converges to a smaller RMSE than

the one using k 5 7 after day 84. It is possible that the

experiment with ensemble size k5 7 was able to capture

the dominant error mode between days 45–50 by

chance, while the ensemble size k5 8 was not. It is clear

that the LETKF is divergent for ensemble size k # 6

and stable for ensemble size k $ 9. Thus we consider

the cases of k 5 7 and k 5 8 as a transition zone of

stability. Compared to the LETKF, the 3DVAR pro-

vides a stable result but the overall accuracy (mean

RMSE 5 0.012254) is worse than LETKF with k 5 9

members (RMSE 5 0.008437).

Figure 3 illustrates the performance of the HGDA

system with a5 0.5. The HGDA recovers stability with

k 5 5 and k 5 6 compared with the standard LETKF

diverging at these ensemble sizes. Moreover, although

the RMSE increases during some particular periods, the

HGDA avoids filter divergence even with an ensemble

size as small as k 5 3. These results agree qualitatively

with the findings for the Lorenz model by Penny (2014).

However, we note that the performance of the HGDA

demonstrated here is sensitive to the static background

error covariance matrix. This sensitivity will be dis-

cussed further in section 5c.

The EnKF requires an accurate ensemble mean and a

representative set of perturbations that have converged

toward the unstable-neutral error subspace. For this

reason, the EnKF tends to require a longer spinup as

compared with 3DVAR or 4DVAR (Kalnay and Yang

2010; Houtekamer and Zhang 2016). Comparing the

LETKF (purple line in Fig. 2) and HGDA (purple line

in Fig. 3) with ensemble size k 5 9, the HGDA exhibits

an accelerated spinup period (e.g., HGDA RMSE 5
0.0073 versus LETKF RMSE 5 0.0088 at day 8) due

to the improved accuracy ensemble mean state (Yang

et al. 2012b).

To illustrate the impact of using different ensemble

sizes and different DA algorithms, the same back-

ground ensemble is used in the following discussion.

FIG. 2. Time series of the RMSE of VAR and LETKF with dif-

ferent ensemble sizes (k) in a perfect model assumption.
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The background ensemble is generated by performing

the standard LETKF with 40-members for 20 days. The

expected background error is represented by the dif-

ference between the mean of the 40-member back-

ground ensemble and the nature run. Based on this 40-

member ensemble, we randomly select 6 members (left

panel of Fig. 4) and 30 members (right panel of Fig. 4),

respectively, and then apply the standard LETKF and

HGDA one time without cycling. The observation lo-

cations are marked as green dots in Fig. 4a. We first

focus on the area around the point (x5 30, y5 5), where

there is a negative error in the background field. In

Fig. 4a, the positive increment in that region indicates

that LETKF is able to correct this background error.

However, with the ensemble size k 5 6, the correction

only applies to half of the spatial extent of the error in

that area. When the ensemble size is increased, the

correction in Fig. 4d covers the entire spatial extent

corresponding to the negative error structure. The ex-

tensively wrong correction around the point (x5 25, y5
12) in Fig. 4a also vanishes with an increased ensemble

size. Figures 4b and 4e describe the VAR correction

based on the corresponding LETKF analysis mean state.

Figures 4b and 4e exhibit similar structure due to the use

of the same static background error covariance matrix,

and tend to have an isotropic-like structure, compared

to the LETKF analysis increments. The VAR correc-

tions can also be useful, such as the area near the point

(x 5 27, y 5 17).

Figure 4c shows the orthogonal correction of the QR-

HGDA. Without setting a hybrid coefficient, the QR-

HGDA achieves a similar amount of correction. There

are still slight differences between the VAR correction

of the HGDA (Fig. 4b) and the extracted orthogonal

component (Fig. 4c). Figure 5 highlights these differ-

ences by subtracting the analysis increment of VAR

from the extracted orthogonal component. These dif-

ferences become more evident as the ensemble size in-

creases from k5 6 to k5 30 (Fig. 5a versus Fig. 5b). As

the ensemble size increases, the error space can be

represented more completely, while the dimension of

the orthogonal space is reduced and representative of

less dominant error modes.

Figure 6 shows the performance of the cycled HGDA

system with the ensemble size k5 6 at day 20. We focus

on the area between (x5 25 to x5 45, y5 25 to y5 33),

where there is a large positive background error

structure. The LETKF, due to its limited ensemble

size, only corrects the left half error structure (Fig. 6a)

while the 2nd step update in the HGDA corrects the

right half part (Fig. 6b). The total HGDA analysis in-

crement is given in Fig. 6c. A comparison between the

VAR increment and the orthogonal correction of the

QR-HGDA shows a similar structure, indicating a similar

ability to correct the background error structure.

While there is little error in the background around

the point (x 5 50, y 5 30), both the VAR increment

(Fig. 6b) and the orthogonal correction (Fig. 6d) reveal

an erroneous adjustment. As shown in Fig. 6c, the in-

accurate corrections made by the VAR increment are

damped by the weighted combination with the LETKF

analysis. However, the corresponding error remains in

the QR-HGDA (Fig. 6e). Since those inaccurate error

structures do not occur in the ensemble subspace, ap-

plying them in the space orthogonal to the ensemble

simply adds noise to the cycledHGDA system. TheQR-

HGDA directly reflects the correction provided by the

VAR and thus fully inherits its inaccuracy. Therefore,

improper estimation of the static error covariance ma-

trix may degrade the accuracy of QR-HGDA. This

provides an explanation for why the QR-HGDA always

has a higher RMSE than the HGDA in all of the ex-

periments presented so far (Table 1).Wewill next utilize

this property to diagnose the quality of the static back-

ground error covariance within the hybrid.

Table 1 presents a 50-day average RMSE for the

LETKF, the HGDA, and the QR-HGDA with ensem-

ble sizes ranging from k 5 3 to k 5 20. Note that the

RMSEs in all tables are multiplied by a factor 100. For

the smallest ensemble sizes, the HGDA produces the

lowest RMSE, followed by theQR-HGDA.Both hybrid

methods prevent filter divergence when the ensemble

size is small (k , 9) and produce lower RMSE than the

standard LETKF. As expected, the advantage of the

QR-HGDA over the LETKF to eliminate filter diver-

gence vanishes as the ensemble size increases (k 5 9)

and LETKF becomes more stable. When the ensemble

FIG. 3. Times series of the RMSE of HGDA (a 5 0.5) with dif-

ferent ensemble sizes (k) in a perfect model assumption.
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size increases to k 5 20, the background error covari-

ance generated by LETKF adequately represents the

growing error modes for the purpose of maintaining

filter stability. With an ensemble size of k 5 20, the

variational corrections using a static background error

covariance matrix are overestimated and degrade the

performance of both hybrids. The QR-HGDA is more

sensitive to these inaccuracies compared to the HGDA.

For example, the RMSE for theQR-HGDAwith k5 20

is even larger than the HGDA with k 5 5.

Since the purpose of the QR-HGDA is to avoid using

the hybrid weight, it is essential to evaluate the QR-

HGDA compared to HGDA with a varying hybrid

weighting value. Figure 7 shows the RMSE of the

HGDA as a function of the combination weight (a) and

with different ensemble sizes versus the RMSE of the

QR-HGDA. The lowest RMSE for ensemble sizes k 5
3, k5 6, and k5 10 occur with a5 0.6, a5 0.4, and a5
0.2, respectively. As expected, the optimal weighting

parameter depends on the ensemble size, and less cor-

rection from the VAR is needed as the ensemble size

increases. As demonstrated with Figs. 4c and 4f, the

orthogonal component also becomes smaller as more

ensemble members are used. With k 5 10, the HGDA

always leads to smaller RMSE than the QR-HGDA

regardless of the weighting parameter.

At these three small ensemble sizes, the HGDA be-

comes more sensitive to the tuning parameter with RMSE

ranging from 0.006 to 0.22, while the QR-HGDA is rela-

tively robust with RMSE ranging from 0.0082 to 0.0119.

FIG. 4. Snapshots of the potential temperature at the bottom level of the same background field experiment at day

20with different ensemble sizes (k5 6 and k5 30). Background error (contour, the dashed and solid lines represent

the negative and positive value, respectively) and analysis increment (shade) of (a) LETKF with k 5 6, (b) VAR

(the second step update in HGDA; its background field comes from the analysis mean state of EnKF), and

(c) orthogonal component of QR-HGDA. (d)–(f) As in (a)–(c), but using ensemble size k 5 30. The observation

locations are marked as green dots in (a).
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When the ensemble size is small (k5 6) and uses a small

weight value (i.e., more impact from the LETKF, e.g.,

a5 0.1), the QR-HGDA provides a slight improvement

over the HGDA. The HGDA becomes unstable if the

ensemble size is small (e.g., k5 3) and a is small. There

is a benefit of QR-HGDA over HGDA when a # 0.5.

5. Results with sensitivity experiments

Errors in the DA process include systematic sampling

error of the ensemble, imbalances caused by localiza-

tion, and improper estimation of the error covariance

matrices. Three sensitivity experiments (setup for the

sensitivity experiment is described in section 3b) are

conducted to understand how the HGDA and the

QR-HGDA respond to these issues by including model

bias, misestimation of observation error covariance, and

misestimation of background error covariance.

a. Sensitivity to model bias

We have demonstrated under a perfect model

framework that both HGDA and QR-HGDA prevent

the filter divergence that occurs with LETKF when using

small ensemble sizes. We now examine how the DA

schemes perform in the presence of model bias. Figure 8

shows the performance of the LETKF systems im-

plemented with an imperfect QG model. Compared to

the results using a perfect model (Fig. 2), the variations

in RMSE are larger. For k5 8, the RMSE grows rapidly

after day 30 and the filter diverges. Similarly to the

perfect model, nine ensemble members are required to

prevent filter divergence with the imperfect QG model,

but there are additionally two high peaks in RMSE be-

tween days 42 to 63.

Table 2 displays the 50-day average performance of

the LETKF, HGDA, and QR-HGDA using an imper-

fect QG model with ensemble sizes ranging from k 5 3

to k 5 20. The weighting parameter used in the HGDA

is a 5 0.5. Unlike the results for the perfect QG model,

where the HGDA always produces smaller RMSE than

the QR-HGDA for all ensemble sizes, the QR-HGDA

with the imperfect QG model has smaller RMSE and

bias than the HGDA for the small ensemble sizes k5 3

and k5 4. This indicates that with a larger ensemble size

(e.g., k5 20), the HGDA still reduces RMSE compared

to the LETKF, indicating that the climatological back-

ground error covariance still provides value. However,

similar to what has been discussed in relation to Table 1,

the QR-HGDAhas worse performance than the LETKF

for k 5 20.

b. Sensitivity to observation error estimation

The quality of the observations and whether the ob-

servation error is adequately represented can affect the

DA performance. Penny (2017) discussed the impact of

observation noise on the stability of the filter in relation

to the Lyapunov exponents of the DA systems. Penny

(2017) found that a 3DVAR system with a leading

Lyapunov exponent that is negative but small in mag-

nitude eventually diverges from the truth due to noise

in the observations. It indicates that observation noise

can impact the stability of the DA systems. Under the

perfect model setup, we examine how the presence of

noise in the observations and the improper estimation

of this noise in the observation error covariance matrix

can affect the stability and accuracy of the DA systems.

These sensitivity experiments are performed with three

different sets of observations, but the same observation

error covariance (R) is prescribed. Observations are

generated as 1) error free (i.e., zero noise, with obser-

vations directly sampled from the nature run), 2) with

accurate error variance corresponding to R, and 3)

with error variance double that represented by R.

These experiments will be used to indicate situations

of overestimation, accurate, and underestimation of R,

respectively.

FIG. 5. Snapshots of the potential temperature at the bottom level

of the same background field experiment at day 20. Background

error (contour, the dashed and solid lines represent the negative and

positive value, respectively) is the same as Fig. 4 and the differ-

ence (shade) between analysis increment of VAR and the or-

thogonal component of QR-HGDA with ensemble size (a) k 5 6

and (b) k 5 30.
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As a baseline, with zero observation noise, the RMSE

of all DA systems is reduced dramatically (e.g., Table 3),

confirming that observation noise has a large impact on

the accuracy of theDA systems.When observation noise

is not present, LETKF can confine the error growth rate

even with a small ensemble size. For example, without

noise the RMSE with six members is only 0.006595 com-

pared to the very large RMSEwith the 6-member LETKF

TABLE 1. 50-day averageRMSE for LETKF,HGDA,QR-HGDA, and local QR-HGDAwith different ensemble sizes (k) using a perfect

model assumption. Note the RMSEs are multiplied by a factor 100.

50-day avg RMSE (3100) LETKF HGDA Global QR-HGDA Local QR-HGDA

k 5 3 33.7622 0.9591 1.0329 N/A

k 5 4 28.7014 0.8248 0.9876 2.3357

k 5 5 19.2092 0.7563 0.9375 2.0828

k 5 6 2.2310 0.7649 0.9201 1.6727

k 5 7 1.3271 0.6750 0.8615 1.1881

k 5 8 1.4456 0.6767 0.8848 1.2120

k 5 9 0.8437 0.6562 0.8461 1.0229

k 5 10 0.7667 0.6345 0.8205 0.8783

k 5 15 0.6549 0.6147 0.8072 0.7935

k 5 20 0.5436 0.5934 0.7738 0.6667

FIG. 6. Snapshots of the potential temperature at the bottom level for cycling DA experiment with 6 ensemble

members at day 20. Background error (contour) and analysis increment (shade) of (a) LETKF, (b) VAR (the

second step update inHGDA), (c)HGDA(total correction), (d) orthogonal component, and (e)QR-HGDA (total

correction).
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with observation noise.When observation noise is present,

similar accuracy can only be achieved by using at least

15 ensemble members (Table 1). The HGDA further im-

proves the accuracy compared to the LETKF. Now,

however, the QR-HGDA produces the most accurate

analyses out of all the DA methods examined. This

benefit is most evident at small ensemble sizes (Fig. 9).

Using the same background ensemble as in Fig. 4,

Fig. 10 shows the background error and analysis incre-

ments for the 6-member LETKF, the second-step vari-

ational update of the HGDA, and the orthogonal

component of the QR-HGDA, while varying the ob-

servation noise. When the observational noise increases

from zero (implying an overestimation of R in the data

assimilation) to the correct value (accurate estimation)

to the doubled value (underestimation of R), the incre-

ment structure of the LETKF update does not change

much and is limited to certain regions. The amplitude of

the increments increases as the observation noise in-

creases (Fig. 10a versus Fig. 10g) because this noise only

appears in the innovation term (recall the sameRmatrix

is used in all experiments). When the observation noise

is doubled, the prescribed R matrix underestimates the

inaccuracy of the innovation term. The underestimation

of the gain matrix can lead to the underestimation

of the amplitude of the increment, and vice versa.

However, the increment structure of both the VAR and

the orthogonal component emerges in more areas, in-

troducing more detrimental adjustments caused by the

observation noise (e.g., x5 53, y5 25). This suggests that

the variational correction is sensitive to the observation

noise, and inaccurate corrections are further emphasized

by the QG-HGDA. The LETKF can ignore noise in di-

rections that do not align with the growing error modes

represented by the ensemble perturbations, which makes

it less sensitive to the statistically isometric observa-

tional noise.

To further elucidate this phenomenon, we also per-

form the assimilation of perfect observations for either

only the LETKF or only the VAR component of the

HGDA and QR-HGDA (Table 3). The average RMSE

of assimilating the perfect observations in the 1st step

and the appropriate observation noise in the 2nd step is

larger than the vice versa case (zero noise in LEKTF and

default noise in VAR in Table 3). These results indicate

that a significant portion of the inaccurate corrections of

the VAR component can be attributed to sensitivity to

observational noise. Penny (2017) demonstrated with

the Lorenz 96 model that to avoid filter divergence, the

leading Lyapunov exponent (LLE) of the DA system

must be sufficiently negative to avoid the destabilizing

impacts of observational noise. In other words, not only

must the leading Lyapunov exponent (LLE) of the DA

system be negative, but attention must also be paid to

stable modes that have the LLE close to zero. A small

magnitude LLE renders the DA systemmore susceptible

to noise in the observations, increasing the probability for

the DA system to become unstable. The HGDA can

recover stability by driving the LLE sufficiently negative

to be insensitive to small levels of observational noise.

c. Sensitivity to background error estimation

Experiments in the previous subsection revealed that

the QR-HGDA is slightly less accurate than the

FIG. 8. Time series of the RMSE of LETKF with different en-

semble sizes (k) in an imperfect (biased) QG model. It can be

compared with the perfect QG model experiment shown in Fig. 2.

FIG. 7. RMSE for HGDA (solid lines) and QR-HGDA (dash

lines) with ensemble size k 5 3 (green line), k 5 6 (blue line), and

k 5 10 (red line) as a function of combination weight (a) im-

plemented with a perfect QG model. Note that the RMSEs are

multiplied by a factor of 100.
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standard HGDA unless the observations are very ac-

curate or the observation error variance is over-

estimated (e.g., Table 3). An alternative view would

be to consider that the ratio of the background error

variance in B to the observation error variance in R is

underestimated within the Kalman gain. Thus in at-

tempting to tune the configuration of the QR-HGDA, it

may be more practical to focus on improving the esti-

mation of the static B matrix used for the hybrid as-

similation with the default R matrix in the perfect

model. To investigate the role of the static B matrix in

the HGDA and the QR-HGDA, we construct a new

static background error covariance matrix from cycled

LETKF forecasts (LETKF-derived B). We note that

both the original B and the LETKF-derived B matrices

are constructed with the NMC method.

To understand the characterization of the Bmatrices,

we calculate the horizontal error variance in the B ma-

trix as a function of approximated global wavenumber

for the temperature at the bottom model level (Fig. 11).

As noted in Morss (1999), the global wavenumber is

not well defined in the channel model; however, it in-

dicates the error variance structure at different spatial

scales. The original horizontal background error struc-

ture (Fig. 11a) has a larger variance from large to middle

scales (wavenumber smaller than 20) and very little

variance at small scales. In comparison, the error vari-

ances from the LETKF-derived B (Fig. 11b) at smaller

scales are much larger. One cause of this difference is

that the background error used to construct the original

B matrix contains both growing and nongrowing modes

while the background error used for the LETKF-

derived B is flow-dependent and dominated by fast

growing errors. Also, large error variance at small scales

can reflect noise introduced by procedures such as lo-

calization (Yang et al. 2009b).

The different structure of the LETKF-derived B ma-

trix from the original B matrix will lead to different

performance when they are used by a variational DA

method. The amplitude of the static B matrix can also

affect the performance of the VAR and thus affect the

hybrids. Therefore, we investigate the sensitivity of the

HGDA and the QR-HGDA to both formulations of the

static B matrix with varying amplitudes. For the stand-

alone VAR system, 0.4 is the optimal amplitude factor

[b in the Eq. (13)] for both the original B matrix (the

averaged RMSE is 0.012254) and the LETKF-derived

B matrix (the averaged RMSE is 0.012712). The same

optimal factor indicates that the background error var-

iance is overestimated from the assumptions applied for

constructing the climatological B matrix (Morss 1999).

Figure 12 presents the time-averaged RMSE of the

HGDA and the QR-HGDA with different background

error covariances as a function of the amplitude factor.

In both the k5 6 (Fig. 12a) and k5 10 (Fig. 12b) cases,

the QR-HGDA is more accurate than the HGDAwhen

the LETKF-derived B matrix is used (red lines in

Fig. 12) by the VAR component. Increasing the ampli-

tude of the LETKF-derived Bmatrix leads to improved

performance in both the HGDA and QR-HGDA, even

when using larger ensemble sizes. Also, the difference

between the HGDA and QR-HGDA is reduced with a

larger ensemble size.

TABLE 3. 50-day average RMSE for LETKF, HGDA, and QR-

HGDAwith 6 members with different observation noise scenarios.

Using different observation noise scenario is not applicable to

the stand-alone LETKF. Note the RMSEs are multiplied by a

factor 100.

50-day avg RMSE (3100) LETKF HGDA

QR-

HGDA

Zero noise 0.6595 0.3717 0.3122

Default noise 2.2310 0.7649 0.9201

Double noise 2.6312 1.2961 1.7248

Zero noise in LEKTF and default

noise in VAR

N/A 0.6784 0.8769

Default noise in LEKTF and zero

noise in VAR

N/A 0.4778 0.4184

TABLE 2. 50-day average RMSE and the averaged absolute bias (in parentheses) for LETKF, HGDA, and QR-HGDA with different

ensemble sizes (k) using an imperfect model assumption. Note the RMSEs are multiplied by a factor 100.

50-day avg RMSE (3100) LETKF-bias HGDA-bias QRHGDA-bias

k 5 3 33.6292 (0.0220) 1.2137 (0.0009) 1.1950 (0.0008)

k 5 4 23.2106 (0.0316) 1.1113 (0.0011) 1.0936 (0.0010)

k 5 5 16.6046 (0.0156) 0.9482 (0.0007) 1.0530 (0.0007)

k 5 6 2.9232 (0.0087) 0.9226 (0.0008) 1.0190 (0.0009)

k 5 7 1.8970 (0.0020) 0.8283 (0.0005) 0.9571 (0.0005)

k 5 8 2.5857 (0.0041) 0.8353 (0.0007) 0.9695 (0.0008)

k 5 9 1.2368 (0.0008) 0.8003 (0.0007) 0.9399 (0.0008)

k 5 10 1.1039 (0.0014) 0.7663 (0.0008) 0.8962 (0.0008)

k 5 15 0.9019 (0.0007) 0.7372 (0.0005) 0.8840 (0.0005)

k 5 20 0.7742 (0.0007) 0.7031 (0.0005) 0.8617 (0.0007)
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However, as shown in Fig. 12b, increasing the ampli-

tude of the original B matrix degrades the hybrids and

results in poorer performance compared to a stable

LETKF (k 5 10). This is attributed to the quick degra-

dation at larger scales, given that the original B matrix

has larger power spectrum at these scales. This suggests

that neither the HGDA nor the QR-HGDA gains much

benefit from the large-scale information provided by

the original B matrix. For the LETKF, the background

error and corrections are related to dynamical instabil-

ities and to the density of the observation network used

in this study (Fig. 4a). As a result, LETKF mainly cor-

rects the structures with wavenumber smaller than 15

(Yang et al. 2009a, 2015), constraining errors at very

large scales. Since the 2nd step update of HGDA is

applied to the LETKF analysismean, it is unnecessary to

correct the larger scale again in the VAR when the

LETKF uses a sufficient ensemble size. However, as the

ensemble size is reduced to the point that it is insufficient

to maintain stability, the LETKF analysis gains more

value from the original B matrix’s representation of the

error modes at large scales, even if they are poorly

represented.

We perform a spectral analysis to further identify

changes due to the different background error covari-

ance estimates applied during each update step of the

QR-HGDA. Figure 13 shows the time-averaged power

spectra for each update step in theQR-HGDAusing the

original B or the LETKF-derived B in the variational

correction. For the QR-HGDA (HGDA as well), the

corrections are dominated by the LETKF (first step

update) but their characterizations are different when

using different background error covariance struc-

tures in the second step update during the cycling

run. In general, the corrections provided by both

steps are larger with the HGDA using the original

B matrix than the one with the LETKF-derived

B matrix. For the first step update, the spectrum

power of the increment with the HGDA using the

original B matrix has much higher variance at large

scales while the power distribution with the LETKF-

derived B matrix has a peak between wavenumbers

10 to 20. Compared with the power spectrum dis-

tribution of the standard LETKF with 40 members

(Fig. 13b), the high variance at large scales is at-

tributed to the original Bmatrix as a consequence of

the overcorrection at these scales. For the second step

update, the slope associated with the LETKF-derived B

matrix is smaller than that associated with the original

B matrix at large scales. This demonstrates that these

two B matrices resulted in very different bases for

correcting the dominant errors in the LETKF analy-

sis mean.

The findings in this experiment with the LETKF-

derived B matrix suggest that deriving a proper static B

matrix, which can compensate the ensemble-sampled

flow-dependentBmatrix and help to better describe the

uncertainty in the ensemble mean state, can enhance

the value of hybrid methods. A well-tuned B matrix for

the stand-alone variational systems is not an excellent

candidate for the hybrids since the original well-tuned

B matrix represents the uncertainties for a climatologi-

cal background error characterization rather than an

analysis mean state with dynamical corrections in

HGDA. With the LETKF-derived B matrix, both the

HGDA and QR-HGDA produce smaller RMSE than

the standard LETKF (shown in Fig. 12) and the QR-

HGDA outperforms the HGDA, especially with k 5 6.

However, we note that, in addition to the structure of

the Bmatrix, there is another parameter, the amplitude

of the B matrix, that may affect the performance of the

hybrids. Therefore, in Fig. 14, we calculate the time-

averaged RMSE difference between the hybrids (QR-

HGDA minus HGDA) by varying the combination

weighting (a), which is used in the HGDA, and the

amplitude factor (b), which applied to adjust the am-

plitude of the static LETKF-derived B matrix. In each

row element (e.g., b 5 1.0) of Fig. 14, QR-HGDA has

only one solution but the outcome of HGDA depends

on the choice of a. We note that the results in column

a 5 0.5 are the same as the hybrid methods using the

LETKF-derived B matrix (red lines) shown in Fig. 12b.

As shown in Fig. 14, in general, the QR-HGDA pro-

duces smaller or similar RMSE values to those of the

FIG. 9. Time series of the RMSE for 3DVAR (gray), LETKF

(red), HGDA (green, a 5 0.5), and QR-HGDA (blue) with en-

semble sizes k5 6 (dashed–dotted curves), k5 10 (dashed curves),

and k 5 15 (solid curves) in a perfect model and perfect observa-

tion assumption.
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HGDAwith all combination weightings a. A parameter

like b is usually determined when the static B matrix is

optimized for the 3DVAR system and would not be

tuned for the hybrid method.

The LETKF-derived B may not yet be the optimal

choice for the HGDA/QR-HGDA; the main purpose

of this experiment is to examine how a B matrix with a

different characterization in comparison to the

FIG. 11. Horizontal background error variances of (a) the originalBmatrix and (b) the LETKF-derivedBmatrix

as a function of approximate global wavenumber. The global wavenumber is defined by Morss (1999) as: [(2.5 3
k)2 1 (5.2 3 0.5 3l)2]1/2. The k and l represent the zonal wavenumber and the meridional half-wavenumber,

respectively. The factors of 2.5 and 5.2 are applied to scale the zonal and meridional extent of the QG model

to the real world.

FIG. 10. Snapshots of the potential temperature at the bottom level for cycling DA experiment at day 20 with 6 ensemble members.

Background error (contour) and analysis increment (shade) of (a) LETKF, (b) VAR (the second step update in HGDA), and

(c) orthogonal component of QR-HGDA with observation noise equal to zero; (d)–(f) as in (a)–(c), but with observation noise equal to

1 (default value); and (g)–(i) as in (a)–(c), but using the double observation noise.
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original one can modify the performance of the hy-

brids. The LETKF-derived B produces more stable

performance for both hybrids and enhances the QR-

HGDA (with no dependency on an additional hybrid

weighting coefficient) compared to the HGDA. Thus,

it may be more beneficial to shift the focus from the

tuning of a single hybrid weighting parameter to fo-

cusing on improved estimation of the full climato-

logical Bmatrix. Further, we believe it is informative

to examine which characteristics of the climatological

B matrix permit the hybrid methods to achieve their

best performance.

6. Global orthogonality versus local orthogonality

Themainmechanism of theQR-HGDA is to limit the

variational correction to the EnKF ensemble mean to

the subspace orthogonal to the linear subspace defined

by the analysis ensemble perturbations. Penny (2014)

applied hybrid variational corrections to LETKF both

locally and globally and found that the global correc-

tions generally produced more accurate results. Thus,

the orthogonalization in the experiments discussed

above was conducted globally. This global orthogonality

has some advantages for constraining the large-scale bias

and errors using the variational analysis. Further, the in-

formation carried in the global variational correction,

such as dynamical balance, would not be distorted.

Given that the forecast errors with the LETKF system

are dominated by local instabilities, conducting the or-

thogonalization locally in QR-HGDA may emphasize

the local relationship between the errors in the analy-

sis ensemble mean from LETKF and the variational

correction. In this section, we compare the performance

FIG. 12. The time averaged RMSE of LETKF (black solid line), HGDA (dashed line), and QR-HGDA (solid

line) with ensemble size (a) k5 6 and (b) k5 10 as a function of different amplitude factor (b) used in the original

(blue lines) and the LETKF-derived (red lines) background error covariance matrix. The amplitude factor is a

constant for amplifying the variance of the B matrices. Note that the RMSEs are multiplied by a factor of 100.

FIG. 13. Time-averaged power spectra of the increment at each update steps of HGDA and the orthogonal

component of QR-HGDAwith ensemble size (a) k5 6 and (b) k5 10, using differentBmatrix in the VAR system.

The black line shows the time-averaged power spectra of standard LETKF increment with 40 ensemble members.
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of QR-HGDA with global and local orthogonalization.

The local orthogonalization is done by calculating the

orthogonality at each local patch with the identical local

radius used by LETKF, and the local orthogonal com-

ponent is used to correct the corresponding grid point.

Therefore, the following result also demonstrates the

possibility to incorporate the variational correction

based on local orthogonality, which may have a com-

putational advantage due to potential opportunities

for parallelization when extending the QR-HGDA to

higher dimensions.

With the original B matrix, the averaged RMSE of

QR-HGDA with local orthogonality (denoted as local

QR-HGDA) is shown in Table 1 and it can be compared

with the result of QR-HGDAwith global orthogonality.

The local QR-HGDA suffers severe filter divergence

with a very small ensemble size (k5 3). Compared with

global orthogonality, the reliance on local orthogonality

degrades the hybrid system for small ensemble sizes

(e.g., k # 10). However, the local QR-HGDA starts to

show some improvement over the global one at k 5 15

and k 5 20. This suggests that the local orthogonal

component may alleviate the degradation obtained with

the global orthogonalization. Furthermore, as discussed

in the previous section, a well-tuned static B matrix is

needed to optimize the performance of the HGDA and

the QR-HGDA. As shown in Table 4, the results of

the global QR-HGDA and the local variant with the

LETKF-derived Bmatrix are consistent with those using

the original B matrix and the local QR-HGDA gener-

ally has worse performance than the global QR-HGDA.

The performance of the local QR-HGDA quickly im-

proves with increasing ensemble size. The accuracy of

twomethods converges with large ensemble size and the

local QR-HGDA is slightly more accurate than the

global variant at k 5 20.

7. Conclusions

The primary motivation of this study was to provide a

method to eliminate the empirically determined hybrid

weighting parameter used in conventional hybrid data

assimilation systems. Based on the framework of the

two-step hybrid gain data assimilation (HGDA) algo-

rithm proposed by Penny (2014), the use of a hybrid

weighting parameter can be avoided by limiting the

variational correction to the subspace orthogonal to the

linear subspace defined by the analysis ensemble per-

turbations. The orthogonal component is extracted by

applying aQR factorization to the combinedEnKF/VAR

solution space. This orthogonal component is applied di-

rectly to update the EnKF analysismean state rather than

using a weighting parameter. This new algorithm is re-

ferred to as QR-HGDA.

The feasibility of the QR-HGDA algorithm is ex-

plored based on its performance with a quasigeostrophic

(QG) model and compared to the parameter-dependent

HGDA. By removing the dependency of the hybrid

methods on a hybrid weighting parameter, we have

highlighted the critical importance of carefully tuning

the background (B) and observation (R) error covari-

ance matrices. Given that the optimization of the hybrid

gain matrix is the key characteristic of the hybrid gain

methods, and that the Kalman gain matrix is a function

of both B and R, we showed that poor estimation of

either of these matrices can adversely affect the hy-

brid DA performance. This was shown for both the

FIG. 14. RMSEdifference betweenHGDAandQR-HGDA(the

QR-HGDA minus the HGDA) using 10 ensemble members with

the combination weight of HGDA varying from a5 0.1 to a5 0.9,

and the amplitude of LETKF-derived B matrix from b 5 0.1 to

b 5 2.0. Negative (blue) values indicate that the QR-HGDA is

more accurate than the HGDA. Note that the RMSE differences

are multiplied by a factor of 100.

TABLE 4. 50-day average RMSE for the QR-HGDA and the

local QR-HGDA with different ensemble sizes (k) using the

LETKF-derived B matrix. It can be compared with the cases with

the original B matrix shown in Table 1. Note the RMSEs are

multiplied by a factor 100.

50-day avg

RMSE (3100)

Global

QR-HGDA

Local

QR-HGDA Difference

k 5 3 2.6186 22.7854 20.1668

k 5 4 1.2283 2.6725 1.4442

k 5 5 0.9392 1.3406 0.4014

k 5 6 0.8562 0.9902 0.1340

k 5 7 0.7249 0.8721 0.1472

k 5 8 0.7590 0.8867 0.1277

k 5 9 0.6478 0.7197 0.0719

k 5 10 0.6206 0.6571 0.0365

k 5 15 0.5908 0.6086 0.0178

k 5 20 0.5330 0.5289 20.0041
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QR-HGDA and HGDA based on their sensitivity to

the B and R matrices and to model bias.

From a series of sensitivity tests, we found that a B

matrix well tuned for use with a stand-alone 3DVAR

may not be the optimal choice for use in the hybrid

methods. This highlights the imperative of evaluating

the optimality of the climatological Bmatrix not only in

theHCDA (Satterfield et al. 2018), which combining the

background error covariance matrix from component

DA systems, but also in the HGDA. Degradation oc-

curred in the hybrids because the 3DVAR-tuned B

matrix had a larger variance from large to middle spatial

scales and quickly tapered off for small scales. With a

sufficient ensemble size (e.g., k$ 9), the LETKF already

constrains the large scales fairly well. Thus for the

HGDA, as long as the ensemble size is sufficient to

stabilize the LETKF system, the high variance at larger

spatial scales in the 3DVAR-tuned B matrix used in

the second step correction only causes the introduction

of unnecessary corrections in the DA cycle that de-

grade accuracy. In contrast, the climatologicalB derived

from a long history of cycled LETKF forecasts has much

smaller variance at large scales owing to the flow de-

pendence in the LETKF corrections leading to forecast

errors dominated by growing errors associated with lo-

cal instabilities and partially to the use of localization.

Compared to using the original climatological Bmatrix,

the accuracy of both the HGDA and QR-HGDA ana-

lyses are improved when instead using the LETKF-

derived B matrix.

When the observation error variance is intentionally

overestimated by using perfect observations (i.e., with-

out the presence of observational noise), the QR-

HGDA has smaller RMSE than the HGDA and the

standard LETKF. When observation noise is increased,

the HGDA can partially cancel some of the noise in-

duced by observations. It is noticed that the LETKF can

ignore noise in directions that do not align with the

growing error modes represented by the ensemble per-

turbations. Thus, the LETKF is less sensitive to the

statistically isometric observational noise whereas the

variational correction is more sensitive to those noises.

If noise projects onto the orthogonal subspace relative

to the analysis ensemble perturbation subspace, theQR-

HGDA degrades the analysis accuracy more than the

HGDA. This implies that the QR-HGDA is more sen-

sitive to the performance of the VAR.

We would like to emphasize again that the LETKF-

derived B matrix is not the optimal one for using in the

variational system. It shows a different error structure

from the original B matrix that is constructed using the

forecast error collected from the stand-alone 3DVAR

and thus contains both growing and nongrowing modes.

Given that the VAR component is used to correct the

LETKF analysis mean, the need to reduce the large-

scale error structure in the static B matrix used in the

second stepHGDA raises the importance of reestimating

the staticBmatrix for the use with theHGDA.However,

how to properly estimate a static background error is

arduous, especially for an operational purpose. Even

with this simple QG-model, it is a nontrivial task to

optimize the staticBmatrix. In real applications, a static

Bmatrix is usually preestimated and the only parameter

occurred in a hybrid algorithm is the combination

weight. When the background and observation error

covariance matrices are well estimated, the QR-HGDA

has better accuracy than the HGDA using the em-

pirically best combination weighting. These results

suggest that the QR-HGDA could be a competitive

‘‘parameterless’’ hybrid algorithm compared to other

hybrid methods that rely on weighting parameters.

Moreover, because of its greater sensitivity to the varia-

tional component, exploration with the QR-HGDA can

help practitioners to evaluate and tune the background

and observation error covariance matrices used in hybrid

methods.

Finally, we explored whether the QR-HGDA can be

performed with local orthogonality. For an operational

center, it is not only the scalability of theDA system that

is of interest but also the total computational cost. The

HGDA and QR-HGDA provide excellent scalability of

the hybrid DA system and the local QR-HGDA is ad-

vantageous to the computational cost. The findings with

the QG model suggest that applying global orthogo-

nality is more accurate with small ensemble sizes and the

performance between the global QR-HGDA and the

local QR-HGDA converges when the ensemble size

increases. However, based on the experiments with the

QG model, we found that global orthogonality is more

advantageous for stabilizing the hybrid DA system and

maintains large-scale balances. Furthermore, applying

the variational correction with global orthogonality still

has its importance in terms of constraining dynamical

balance and large-scale bias.

In this work, the idea of limiting the variational cor-

rection to an orthogonal subspace to develop a param-

eterless hybrid algorithm is demonstrated with a simple

dynamical model. The comparable accuracy of the lo-

cal and the global QR-HGDAwith sufficient ensemble

size implies that local QR-HGDA has a potential for

implementing a complex dynamical model with a higher

dimension. While this finding is for a simple configu-

ration, it can serve as a basis for further study of the

QR-HGDA with full physics and dynamics to under-

stand the feasibility in a realistic application. Moreover,

developing an ‘‘online’’ algorithm that allows the

2348 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/09/21 06:01 PM UTC



orthogonality procedure inside the variational system

through the minimization process is worthy of further

investigation. An additional interesting avenue of in-

vestigation might be to examine the impact of defining

the orthogonality with a non-Euclidean inner product.
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